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Analysis of Some Finite Elements 
for the Stokes Problem 

By Christine Bernardi and Genevieve Raugel 

Abstract. We study some finite elements which are used in the approximation of the Stokes 
problem, so as to obtain error estimates of optimal order. 

Resume. Nous etudions deux elements finis utilises pour l'approximation du probleme de 
Stokes et obtenons des estimations d'erreur d'ordre optimal. 

I. Introduction. Let ?1 be a bounded polyhedral domain in Rd, d = 2 or 3. We 
consider the standard variational formulation of the stationary Stokes equations: for 
f given in H l(2)d find (u, p) in Ho(2)d x Lo(Q) such that 

(I1.1) /Vv GE Ho (Q) d, v (grad u, grad v)-( p, div v) = (f, v), 

kVq E L2(2), (q,divu) = 0, 
where we denote by (., -) the inner product of L2(Q) (or L2(Q)d or L2(Q)d'). 

Hereafter L2(Q) is the space { q e L2(Q); fQ q dx = 0). Now let h be a real positive 
parameter tending to zero. We introduce two finite-dimensional subspaces Xh and 
Mh of Ho(g)d and L2(Q ) respectively, satisfying the usual condition: for any qh in 
Mh, qh * 0, there exists vh in Xh such that (qh, div vh) # 0. We consider the 
discretized problem: find (Uh, Ph) in Xh x Mh such that 

1 2) |VVh 
e Xh, v 

(graduh,grad vh) -(Ph, divvh) = (f,vh), 

( * ) \Vqh E Mh M (qh, divUh) 
= 0 

We recall that problem (1.1) (respectively problem (I.2)) has a unique solution (u, p) 
in Hol(O )d x Lo(Q) (respectively (uh, Ph) in Xh x Mh). Moreover, when (u, p) 
belongs to the space Hm" 1(Q)d x Hm(Q), it is well-known (see [7]) that the error 
estimate 

(1.3) iiu - UhII1,Q + IIP - PhII0,Q < Chm(IIUIIM+?i, + IIPIIm,Q) 
holds whenever the following additional hypotheses are satisfied: 

(H1) for any q in Hm(Q) n L2(o), one has 
Inf jjq-qh II 

q 0,1 - Chmjjqj,IQ; 
EMh 

(H2) there exists a linear operator HIh from Hm+ 1(0)d n HJ(2)dinto Xh such that 

Hm+l(sa)d Hll fd Vqh E Mh, (qh,div(v 
- rihv)) = O, 

Vv e Hm?1(2)d n Hl(O2), lvq 
E 

lvi, cmiiml= 
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(H3) for each qh in Mh, there exists a function Vh in Xh such that 

(div vh, qh) >, fljqhll0,Q1Vh111,Q1 

where , > 0 is a constant independent of h. 
Our aim is to give some examples of finite-element spaces such that hypotheses 

(Hi), (H2) and (H3) are satisfied. To this end, we introduce a family (5)h of 
triangulations of K2, where 5h is made of d-simplices with diameters bounded by h. 

For any integer k, Pk(K) denotes the space of polynomials of degree < k on K. 
We set 

Mh(m) qh E Lo ( VKE); K -E,h, qh/K E Pm-1(K)}. 

Then hypothesis (Hi) is satisfied (see [2] for instance). Finally, we set 

Xh = {Vh E c(Q) n Ho(0) d; VK E hI Vh/K E PK}; 

hereafter we study some examples of spaces PK introduced by Fortin [6] such that 
hypotheses (H2) and (H3) are satisfied. 

More precisely, we give in Section II an example of a simplicial element of order 
m = 1 and, in Section III, an example of a three-dimensional tetrahedral element of 
order m = 2. 

From now on we denote by 1 Ilm and I Im the usual norm and seminorm on 
the Sobolev space Hm(Q). 

II. A Simplicial Element of Order 1 (d = 2 or 3). Let us consider a d-simplex K 
with vertices a,,... and ad+1. For 1 < i < d + 1, we denote by Xi the barycentric 
coordinate associated with ai, by Fi the face which does not contain a1, and by ni the 
unit outward normal to Fi, and we set 

d+1 

Pi = ni ]14 Xj 
j=l,j*i 

Then, we consider 

(11.1) PK= PJ(K)d ED Span{pi, 1 < i < d + 1). 

(Note that dim PK = (d + 1)2.) As far as the degrees of freedom are concerned, we 
can choose the values at the vertices ai, 1 < i < d + 1, and the flux through the 
faces Fi, 1 < i d + 1. 

LEMMA 11.1. For any v in WO(K)d, there exists a unique IIKV in PKsuch that 

HIKV(ai) = v(ai), 

(11.2) i|(vl-Hv) . nida = 0, 
1 i < d + 1. 

Moreover, KIKy/F depends only on v/F, 1 < i< d + 1. 

Proof. Let us denote by f1KV the classical Lagrange interpolate of v in PJ(K)d, 
i.e., 

d+1 

11KV= V v(ai)Xi. 
i=l 
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Then, as the pi's are equal to 0 at any vertex, one has 
d+1 

IIKV =IKV + aip1, 

(11.3) d+1 

with ai= (v-lKv) * nida )/ f j Xi da. 
]= 1, j*i 

Moreover, on F, 
d+1 

H KVIF, 1: V( a j )X + a, pi 
j=l1, j* I 

so that HIKV/F depends only on v(aj),j * i, and on JF v ni da. 
Now, for each h, we consider a triangulation Fh of Q made of d-simplices with 

diameters bounded by h and we assume that the family (h)h iS regular, i.e., (see [2]) 
there exists a constant a such that 

(11.4) Vh, VK e 5h, hK < aPK, 

where h K is the diameter of K, and PK the diameter of the sphere inscribed in K. 
With each K in Yh, we associate the space PK defined by (11.1); then Lemma 11.1 

allows us to define an operator H1h from ?( o()d dn Ho(Q)d into Xh by 

(II.S) VK c- 9-h, 1hVIK 
= IKV 

LEMMA 11.2. The operator H1h satisfies (H2) for m = 1. 

Proof. Clearly, one has 
d+1 

fKdiv(v-IKV) dx = f n(v-lKv)nda = O 

so that Vqh C Mh(l), (qh, div(v - llhV)) O. 

Moreover, we know that (see [2], for instance), for k = 0 and 1, 

IV - lKVIk ,K < Ch2k |V12,K. 

Let us compute IIKV - fKV = Ed+a 1a,pi. We consider an affine invertible mapping 
FK: X 1-4 X = BKX + bK which maps the d-simplex K = {e Rd; V i, I i < d, 

> 0 and = x < 1) onto K, and use the notations x = FK(X), V = V Ff- 

Clearly, one has 

IPiI k,KfI IIDk(H Xd1) 2 

Cf Dk(HX2) 2 BKIdS < Cldet BKD IIBKII 

so that, by the regularity of the family (hY~)h' 

(11.6) IP~Ik,K < Chk/k 

But, since 
d+1 d+2 

fE H i da =detBK/IF, H | < 
KXBdG, 

j=l,j*i ~ j=1j* 
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we obtain by (II.3) 

lail < Cldet BK/F| vV - HKvIda < Cf IV - HKVId; 

therefore, as P1(A)d is invariant under HIk, 

lail < CjIAV|K < Cldet B IBKl IV12,K < ChK-d/2KV12 

The previous inequalities yield, for k = 0 and 1, 

lV - HIKVIk K K ChK lVl2,K, 

so that 

liv - HKVIll, < ChlV12,0. 

We recall the proof of the following inequality only for the reader's convenience. 

LEMMA 11.3. For any v in H1(K), we have 

(11.7) |lvJlO F; < C|mes Fi|l/ h -d/2 { IIVIIO,K+ hKV } 

Proof. As the trace mapping is continuous from H1(K) into L2(Fi), 

|lVlloF = Idet BK/IF AV d6 a Cldet BK/pI { llVllO,K + lV|,k1 } 

< C|mes Fil h -{llvllo K + h2ivl 2K} 

Let us now study the hypothesis (H3). We know (see [7, Chapter I, Lemma 3.2]) 
that, for each qh in Mh(l), there exists v in Hol(i2)d such that 

(11.8) divv = qh and lIvIlvl, < Cllqhllo,Q 
Hence, the hypothesis (H3) is an immediate consequence of the following 

LEMMA 11.4. For any v in Ho( )d, there exists Vh in Xh such that 

(11.9) Vqh GE MP 
f (qh, div(v - vh)) = 0 

and llVhlll,g < Cllvli1, . 

Proof. Let us denote by wh the interpolate of v in the space 

{ hE- W?(n) n Ho1(u); V1KE- 9-h, dhKEP(f}, {Uhe UhKE=j 

defined by local regularization as in [4] (see [1] for an explicit generalization to the 
case d = 3). By the regularity of the family (gh)h we know that the following local 
interpolation error holds 

(11.10) i|V - Whll0,K + hKiWhIl,K < ChKIIVIll,AK, 

where AK is the union of all K' in Yh such that K rn K' # 0; moreover, each 
element of 9h is contained in at most M subsets AK, where M is an integer 
independent of h. 

Then, we consider the element vh in Vh defined by 

vh(ai) = wh(ai), 

A 
v | - vh) 

- 
nidcr = O, 

1 < i < d + 1, 
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or, in other words, equal on K to 
d+1 

Vh/K = Wh+ aiPi 

d+1 

with ai= (v -wh) .nida)/ H X day. 
J ~ ~ ~ ~ ~ ~ ~ ~~~~~='o i= 

Clearly, one has Vqh e Mh(), (qh, div(v - vh)) = 0. Moreover, by (11.6), 
d+1 d+1 

hI1,~K < IIWhlll,K + E IaLIIIPLII1K I IjWhlllK + Chkd2-1 E jj 
i=l i=l 

But, we also have 

lail < Cldet BK/F| | (v - wh) - ni do < CImes Fl|11|v - WhII0o,F 

Lemma I.3 implies 

(II.11) ja1j < ChK /2{ ||v - WiI OK + hKIV - WhllK } 

Finally, we obtain 

IIVhlll,K < IIWhlllK + hK1{ IV - WhIIoK+ hKIV - Wh1l,K} 

which, together with (11.10), yields llvhlll1 < Cjjvjllju 
As assumptions (HI) to (H3) are satisfied with m = 1, this element can be used to 

solve the Stokes problem with an 0(h)-error estimate. 
Remark 11.1. In the two-dimensional case, we can also consider a triangulation 7-h 

of 0 made of triangles and convex quadrilaterals. Then, if K is a triangle, the space 

PK is defined by (11.1). If K is a convex quadrilateral with vertices a,,... and a4, 
there exists an invertible mapping FK in Q1, which maps the unit square K = [0, 1]2 
onto K (Q1 is the space of polynomials spanned by X X2, X3 = 1 - x and 

X4= 1 - X2); for 1 < i < 4, we denote by Fi the edge with vertices a._1 and ai (of 
course, ao = a4) and by nli the unit outward normal to Fi, and we set 

4 

pin (= oF i )q q 
H X 

Then, we consider 

(11.12) PK= Q1(K)2 e Span{pi, 1 < i < 4), 

where Q1(K) = p o FK 1, P E Q1}. (Note that dim PK = 12.) The degrees of free- 
dom can be chosen as previously. If the family (G7h)h iS regular (see [3] for instance), 
the previous results are still valid. 

III. A Tetrahedral Element of Order 2 (d = 3). Let us consider a tetrahedron K 
with vertices a,,... and a4. We use the same notations as in Section II, in particular, 
we set 

4 

pi= n, :r AX, I < i < 4; 
j=1, joi 

we also introduce the points aij = (a1 + aj), 1 < i < j < 4. Then, we consider 

(III.1) PK = P2(K)3 ED Span{p1, 1 < i < 4) 9 (Span{ X1X2X3X4 })3. 
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(Note that dim PK = 37.) Let us remark that this space generalizes in the three-di- 
mensional case the space studied in [5] for d = 2. As far as the degrees of freedom 
are concerned, we choose the values at the vertices ai, 1 < i < 4, and at the 
midpoints aij, 1 < i < j < 4, the flux through the faces FI, 1 < i < 4, and the 
moments JKx xdiv( ) dx, 1 < 1 < 3. 

LEMMA III.1. For any v in (e0(K)3 3n H1(K)3, there exists a unique FJKV in PKsuch 
that 

IJKv(ai) = v(ai), 1 < i < 4, 

IIKv(aij) = v(aij), 1 < i <]j 4, 

(111.2) |(v -HKv) - ni da = O, I < i < 4,~ 

fx,div(v-FHKv) dx = O, 1 < 1 3. 
K 

Moreover, H KV/F depends only on V/F, 1 < < 4. 

Proof. Let us denote by IKV the classical Lagrange interpolate of v in P2(K )3, 

i.e., 
4 

IKV = v V(ai)Xi(2Xi - 1) + E v(ai )4XiXj. 
i=l -l i<j<4 

Then, as the pi's and X1X2X3X4 are equal to 0 on any edge, JlKv can be written 
4 

(111.3) HKV = JIKV + , aiPi + OX1X2X3X4. 
i=l 

Since X1X2X3X4 is equal to 0 on 8K, we have 

(111.4) aI =((v-fKv) -nida)/f H X1da, 1 < i < 4. 
j=1,j=*i 

Then, setting 
4 

(III.5) IIKv = IIKv + EaiPi, 
i=l 

and using the Green's formula, we obtain 

(111.6) f31 = -( xidiv(v - 11Kv) dx )/fXi2X3X4 dx, 1 1 < 3 

Moreover, on Fi, one has 

HKV/F, 
= 

HKV/F, + aiPi, 

so that H KV/F depends only on v/F. 

Now, for each h, we consider a triangulation Ih of 02 made of tetrahedra with 
diameters bounded by h and we assume that the family (h)h iS regular. 

With each K in 5-, we associate the space PK defined by (111.1); then Lemma 111.1 
allows us to define an operator 11h from i o0(2)3 n Ho'(2)3 into Xh by (11.5). 

LEMMA III. 2. The operator nh satisfies (H2) for m = 2. 
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Proof. Clearly, one has 

f div(v-LYKV) dx =Jxdiv(v-LYKV) dx = O, 1 < < 3, 
K K 

so that Vqh e GMh), (qh, div(v - Hhv)) = 0. 
Moreover, we know that (see [2]), for k = 0 and 1, 

|V - LIKVIk K K 1V13,K. 

Let us compute HKV - JIKV = 4 p1 iPi. As in Section II, 

1I11 < cf Iv - Ilk^da; 
F; 

therefore, as P2(K is invariant under II k, 

oi I < C|3 I h/|| K - 

The previous inequalities, together with (11.6), yield 

< ch3-kl V - KVIk ,K < K 1Vl3,K. 

Finally, we compute HIKv - KIKV = X1X 2X3X4. Clearly, one has 

(III.7) IXXl2X3X4Ik,K C (Dk(X1X 2X 3X 4) KII2kIdet BKI dx) 

ChK 
3/- 
K 

and, by (111.6), 

1IfI Cidet BKr1 div(v1- 1KV) dx. 

We use Green's formula 

1f11I< Cldet BK JK K{ j (dx| + | J kv) n da) + 

C Idet BKI -1/2v - IKVIIO,K + Idet BKIIJ X}V KV) I) 

But we remark that, since x = BKX + bK, 

x,(v - IIKV) n da (BKX) I(v - 11Kv) n|det BK/akI da 
aK aK 

+ bKf (v - 11Kv) h ndet BKlakJ dJ 
KlaK( /K 

Therefore, 

XI (v - IIKv) n da < IIBKIIJ |v - flkv da 

+ IbK| (v - kv) -n daI 
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Since the last term is equal to 0, we obtain 

lII < C Idet BKI 12v - IKVIO,K 

4 
+ Idet BKI |IIBKII E lImes Fi|172 ||v - I[KVIIOF ) 

so that, by Lemma 11.3, 

1If31 < { h-3/2h3 + h 3hKh7j } IVI3 K ChKj |VI3,K- 

The previous inequalities yield, for k = 0 and 1, 

IV - 11KVIk K < Ch3k3k 13,K- 

By (11.8), the hypothesis (H3) is an immediate consequence of 

LEMMA 111.3. For any v in Ho'( 2)3, there exists Vh in Xh such that 

(111.8) 
Vq~~~Mhe2) 

(qh, div(v - vh)) = 0 

and IlVhlll, < CIIVII1,0. 

Proof. Let us denote by wh the interpolate of v in the space 

{uh eO(-Q)fnHo(Q); VKEY7h , u {Uh E @?(&2) n Ho(&2); 8 Uh/K E P2(K 

defined by local regularization as in [1], so that (1110) is still satisfied. 
Then, we consider the element vh in Vh equal on K to 

4 

Vh = Wh + E aiPi + I12X3X4 
i=l 

with 
4 

a, (v(v wh) - 
nida)/f H da, 

i= 1, Thi 

,=, divv Wh w- aipi) dx/l X2X3X4 dx. 

Clearly, one has Vqh E Mh(2) (qh, div(v - vh)) = 0. Moreover, by (11.6) and (111.7), 

llVhlIl,K < llWhlll,K + Ch2 ( E Jail + 111). 

The a 's still satisfy (11.11). We also have 

|IfB, < Cldet BKI ( J(V - Wh- aipi dx 
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By the same way as in the proof of Lemma 111.2, 

4 

lIl < C I/det BKI ||v - Wh - aiPi + Idet BKI 1IIBKII 
0= ,K 

X I |mes Filh (i|V - Wh - aipi + hKv Wh a p 

< C{hc3/2 llV - WhII0,K+ h-1/21V - WhI1,K + E lail} 

Finally, we obtain 

IlVhlll K < IlWhlIlIK + ChjK{ lIV - 
WhIIOK + hKIV 

- 
WhIl,K 

which, together with (11.10), yields IvhIll 'a Cl< v u 

Consequently, this element can be used to solve the Stokes problem in the 
three-dimensional case with an O(h2)-error estimate. 
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